
5.2

Fx = −F23 = − 1
4πε0

q2 q3
r23

2

= −⎛
⎝8.99 × 109 N · m2

C2
⎞
⎠

⎛
⎝4.806 × 10−19 C⎞

⎠
⎛
⎝8.01 × 10−19 C⎞

⎠

⎛
⎝4.00 × 10−7 m⎞

⎠
2

= −2.16 × 10−14 N

and

Fy = F21 = 1
4πε0

q2 q1
r21

2

= ⎛
⎝8.99 × 109 N · m2

C2
⎞
⎠

⎛
⎝4.806 × 10−19 C⎞

⎠
⎛
⎝3.204 × 10−19 C⎞

⎠

⎛
⎝2.00 × 10−7 m⎞

⎠
2

= 3.46 × 10−14 N.

We find that

F = Fx
2 + Fy

2 = 4.08 × 10−14 N

at an angle of

ϕ = tan−1 ⎛
⎝

Fy
Fx

⎞
⎠ = tan−1 ⎛

⎝
3.46 × 10−14 N

−2.16 × 10−14 N
⎞
⎠ = −58°,

that is, 58° above the −x-axis, as shown in the diagram.

Significance

Notice that when we substituted the numerical values of the charges, we did not include the negative sign of
either q2 or q3 . Recall that negative signs on vector quantities indicate a reversal of direction of the vector in

question. But for electric forces, the direction of the force is determined by the types (signs) of both interacting
charges; we determine the force directions by considering whether the signs of the two charges are the same or
are opposite. If you also include negative signs from negative charges when you substitute numbers, you run the
risk of mathematically reversing the direction of the force you are calculating. Thus, the safest thing to do is to
calculate just the magnitude of the force, using the absolute values of the charges, and determine the directions
physically.

It’s also worth noting that the only new concept in this example is how to calculate the electric forces; everything
else (getting the net force from its components, breaking the forces into their components, finding the direction
of the net force) is the same as force problems you have done earlier.

Check Your Understanding What would be different if q1 were negative?

5.4 | Electric Field

Learning Objectives

By the end of this section, you will be able to:

• Explain the purpose of the electric field concept

• Describe the properties of the electric field

• Calculate the field of a collection of source charges of either sign
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As we showed in the preceding section, the net electric force on a test charge is the vector sum of all the electric forces
acting on it, from all of the various source charges, located at their various positions. But what if we use a different test
charge, one with a different magnitude, or sign, or both? Or suppose we have a dozen different test charges we wish to try
at the same location? We would have to calculate the sum of the forces from scratch. Fortunately, it is possible to define a
quantity, called the electric field, which is independent of the test charge. It only depends on the configuration of the source
charges, and once found, allows us to calculate the force on any test charge.

Defining a Field
Suppose we have N source charges q1, q2, q3 ,…, qN located at positions r→ 1, r→ 2, r→ 3 ,…, r→ N , applying N

electrostatic forces on a test charge Q. The net force on Q is (see Equation 5.2)

F→ = F→ 1 + F→ 2 + F→ 3 + ⋯ + F→ N

= 1
4πε0

⎛

⎝
⎜Qq1

r1
2 r̂ 1 + Qq2

r2
2 r̂ 2 + Qq3

r3
2 r̂ 3 + ⋯ + QqN

r1
2 r̂ N

⎞

⎠
⎟

= Q
⎡

⎣
⎢ 1
4πε0

⎛

⎝
⎜q1
r1

2 r̂ 1 + q2
r2

2 r̂ 2 + q3
r3

2 r̂ 3 + ⋯ + qN
r1

2 r̂ N
⎞

⎠
⎟
⎤

⎦
⎥.

We can rewrite this as

(5.3)F→ = Q E→

where

E→ ≡ 1
4πε0

⎛

⎝
⎜q1
r1

2 r̂ 1 + q2
r2

2 r̂ 2 + q3
r3

2 r̂ 3 + ⋯ + qN
r1

2 r̂ N
⎞

⎠
⎟

or, more compactly,

(5.4)
E→ (P) ≡ 1

4πε0
∑
i = 1

N qi
ri

2 r̂ i.

This expression is called the electric field at position P = P(x, y, z) of the N source charges. Here, P is the location of the

point in space where you are calculating the field and is relative to the positions r→ i of the source charges (Figure 5.18).

Note that we have to impose a coordinate system to solve actual problems.
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Figure 5.18 Each of these eight source charges creates its own
electric field at every point in space; shown here are the field vectors
at an arbitrary point P. Like the electric force, the net electric field
obeys the superposition principle.

Notice that the calculation of the electric field makes no reference to the test charge. Thus, the physically useful approach is
to calculate the electric field and then use it to calculate the force on some test charge later, if needed. Different test charges
experience different forces Equation 5.3, but it is the same electric field Equation 5.4. That being said, recall that there
is no fundamental difference between a test charge and a source charge; these are merely convenient labels for the system of
interest. Any charge produces an electric field; however, just as Earth’s orbit is not affected by Earth’s own gravity, a charge
is not subject to a force due to the electric field it generates. Charges are only subject to forces from the electric fields of
other charges.

In this respect, the electric field E→ of a point charge is similar to the gravitational field g→ of Earth; once we have

calculated the gravitational field at some point in space, we can use it any time we want to calculate the resulting force
on any mass we choose to place at that point. In fact, this is exactly what we do when we say the gravitational field of

Earth (near Earth’s surface) has a value of 9.81 m/s2, and then we calculate the resulting force (i.e., weight) on different

masses. Also, the general expression for calculating g→ at arbitrary distances from the center of Earth (i.e., not just near

Earth’s surface) is very similar to the expression for E→ : g→ = GM
r2 r̂ , where G is a proportionality constant, playing

the same role for g→ as 1
4πε0

does for E→ . The value of g→ is calculated once and is then used in an endless number

of problems.

To push the analogy further, notice the units of the electric field: From F = QE , the units of E are newtons per coulomb,

N/C, that is, the electric field applies a force on each unit charge. Now notice the units of g: From w = mg , the units of

g are newtons per kilogram, N/kg, that is, the gravitational field applies a force on each unit mass. We could say that the
gravitational field of Earth, near Earth’s surface, has a value of 9.81 N/kg.

The Meaning of “Field”
Recall from your studies of gravity that the word “field” in this context has a precise meaning. A field, in physics, is a
physical quantity whose value depends on (is a function of) position, relative to the source of the field. In the case of the

electric field, Equation 5.4 shows that the value of E→ (both the magnitude and the direction) depends on where in space

the point P is located, measured from the locations r→ i of the source charges qi .

In addition, since the electric field is a vector quantity, the electric field is referred to as a vector field. (The gravitational
field is also a vector field.) In contrast, a field that has only a magnitude at every point is a scalar field. The temperature in

Chapter 5 | Electric Charges and Fields 199



a room is an example of a scalar field. It is a field because the temperature, in general, is different at different locations in
the room, and it is a scalar field because temperature is a scalar quantity.

Also, as you did with the gravitational field of an object with mass, you should picture the electric field of a charge-bearing
object (the source charge) as a continuous, immaterial substance that surrounds the source charge, filling all of space—in
principle, to ±∞ in all directions. The field exists at every physical point in space. To put it another way, the electric charge

on an object alters the space around the charged object in such a way that all other electrically charged objects in space
experience an electric force as a result of being in that field. The electric field, then, is the mechanism by which the electric
properties of the source charge are transmitted to and through the rest of the universe. (Again, the range of the electric force
is infinite.)

We will see in subsequent chapters that the speed at which electrical phenomena travel is the same as the speed of light.
There is a deep connection between the electric field and light.

Superposition
Yet another experimental fact about the field is that it obeys the superposition principle. In this context, that means that we
can (in principle) calculate the total electric field of many source charges by calculating the electric field of only q1 at

position P, then calculate the field of q2 at P, while—and this is the crucial idea—ignoring the field of, and indeed even

the existence of, q1. We can repeat this process, calculating the field of each individual source charge, independently of

the existence of any of the other charges. The total electric field, then, is the vector sum of all these fields. That, in essence,
is what Equation 5.4 says.

In the next section, we describe how to determine the shape of an electric field of a source charge distribution and how to
sketch it.

The Direction of the Field
Equation 5.4 enables us to determine the magnitude of the electric field, but we need the direction also. We use the
convention that the direction of any electric field vector is the same as the direction of the electric force vector that the field
would apply to a positive test charge placed in that field. Such a charge would be repelled by positive source charges (the
force on it would point away from the positive source charge) but attracted to negative charges (the force points toward the
negative source).

Direction of the Electric Field

By convention, all electric fields E→ point away from positive source charges and point toward negative source

charges.

Add charges to the Electric Field of Dreams (https://openstaxcollege.org/l/21elefiedream) and see how
they react to the electric field. Turn on a background electric field and adjust the direction and magnitude.

Example 5.3

The E-field of an Atom

In an ionized helium atom, the most probable distance between the nucleus and the electron is

r = 26.5 × 10−12 m . What is the electric field due to the nucleus at the location of the electron?

Strategy

Note that although the electron is mentioned, it is not used in any calculation. The problem asks for an electric
field, not a force; hence, there is only one charge involved, and the problem specifically asks for the field due to
the nucleus. Thus, the electron is a red herring; only its distance matters. Also, since the distance between the two
protons in the nucleus is much, much smaller than the distance of the electron from the nucleus, we can treat the
two protons as a single charge +2e (Figure 5.19).
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Figure 5.19 A schematic representation of a helium atom.
Again, helium physically looks nothing like this, but this sort of
diagram is helpful for calculating the electric field of the
nucleus.

Solution

The electric field is calculated by

E→ = 1
4πε0

∑
i = 1

N qi
ri

2 r̂ i.

Since there is only one source charge (the nucleus), this expression simplifies to

E→ = 1
4πε0

q
r2 r̂ .

Here q = 2e = 2⎛
⎝1.6 × 10−19 C⎞

⎠ (since there are two protons) and r is given; substituting gives

E→ = 1
4π⎛

⎝8.85 × 10−12 C2

N · m2
⎞
⎠

2⎛
⎝1.6 × 10−19 C⎞

⎠

⎛
⎝26.5 × 10−12 m⎞

⎠
2 r̂ = 4.1 × 1012 N

C r̂ .

The direction of E→ is radially away from the nucleus in all directions. Why? Because a positive test charge

placed in this field would accelerate radially away from the nucleus (since it is also positively charged), and again,
the convention is that the direction of the electric field vector is defined in terms of the direction of the force it
would apply to positive test charges.

Example 5.4

The E-Field above Two Equal Charges

(a) Find the electric field (magnitude and direction) a distance z above the midpoint between two equal charges
+q that are a distance d apart (Figure 5.20). Check that your result is consistent with what you’d expect when

z ≫ d .

(b) The same as part (a), only this time make the right-hand charge −q instead of +q .
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Figure 5.20 Finding the field of two identical source charges
at the point P. Due to the symmetry, the net field at P is entirely
vertical. (Notice that this is not true away from the midline
between the charges.)

Strategy

We add the two fields as vectors, per Equation 5.4. Notice that the system (and therefore the field) is
symmetrical about the vertical axis; as a result, the horizontal components of the field vectors cancel. This
simplifies the math. Also, we take care to express our final answer in terms of only quantities that are given in the
original statement of the problem: q, z, d, and constants (π, ε0).

Solution

a. By symmetry, the horizontal (x)-components of E→ cancel (Figure 5.21);

Ex = 1
4πε0

q
r2 sin θ − 1

4πε0

q
r2 sin θ = 0 .

Figure 5.21 Note that the horizontal components of the
electric fields from the two charges cancel each other out, while
the vertical components add together.
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The vertical (z)-component is given by

Ez = 1
4πε0

q
r2 cos θ + 1

4πε0

q
r2 cos θ = 1

4πε0

2q
r2 cos θ.

Since none of the other components survive, this is the entire electric field, and it points in the k̂
direction. Notice that this calculation uses the principle of superposition; we calculate the fields of the
two charges independently and then add them together.
What we want to do now is replace the quantities in this expression that we don’t know (such as r), or
can’t easily measure (such as cos θ) with quantities that we do know, or can measure. In this case, by

geometry,

r2 = z2 + ⎛
⎝
d
2

⎞
⎠
2

and

cos θ = z
r = z

⎡
⎣z2 + ⎛

⎝
d
2

⎞
⎠
2⎤
⎦

1/2.

Thus, substituting,

E→ (z) = 1
4πε0

2q
⎡
⎣z2 + ⎛

⎝
d
2

⎞
⎠
2⎤
⎦

z
⎡
⎣z2 + ⎛

⎝
d
2

⎞
⎠
2⎤
⎦

1/2 k̂ .

Simplifying, the desired answer is

(5.5)E→ (z) = 1
4πε0

2qz

⎡
⎣z2 + ⎛

⎝
d
2

⎞
⎠
2⎤
⎦

3/2 k̂ .

b. If the source charges are equal and opposite, the vertical components cancel because

Ez = 1
4πε0

q
r2 cos θ − 1

4πε0

q
r2 cos θ = 0

and we get, for the horizontal component of E→ ,

E→ (z) = 1
4πε0

q
r2 sin θ i

^
− 1

4πε0

−q
r2 sin θ i

^

= 1
4πε0

2q
r2 sin θ i

^

= 1
4πε0

2q
⎡
⎣z2 + ⎛

⎝
d
2

⎞
⎠
2⎤
⎦

⎛
⎝
d
2

⎞
⎠

⎡
⎣z2 + ⎛

⎝
d
2

⎞
⎠
2⎤
⎦

1/2 i
^

.

This becomes

(5.6)E→ (z) = 1
4πε0

qd

⎡
⎣z2 + ⎛

⎝
d
2

⎞
⎠
2⎤
⎦

3/2 i
^

.
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5.3

Significance

It is a very common and very useful technique in physics to check whether your answer is reasonable by
evaluating it at extreme cases. In this example, we should evaluate the field expressions for the cases d = 0 ,

z ≫ d , and z → ∞ , and confirm that the resulting expressions match our physical expectations. Let’s do so:

Let’s start with Equation 5.5, the field of two identical charges. From far away (i.e., z ≫ d), the two source

charges should “merge” and we should then “see” the field of just one charge, of size 2q. So, let z ≫ d; then we

can neglect d2 in Equation 5.5 to obtain

lim
d → 0

E→ = 1
4πε0

2qz
⎡
⎣z2⎤

⎦
3/2 k̂

= 1
4πε0

2qz
z3 k̂

= 1
4πε0

⎛
⎝2q⎞

⎠

z2 k̂ ,

which is the correct expression for a field at a distance z away from a charge 2q.

Next, we consider the field of equal and opposite charges, Equation 5.6. It can be shown (via a Taylor
expansion) that for d ≪ z ≪ ∞ , this becomes

(5.7)E→ (z) = 1
4πε0

qd
z3 i

^
,

which is the field of a dipole, a system that we will study in more detail later. (Note that the units of E→ are still

correct in this expression, since the units of d in the numerator cancel the unit of the “extra” z in the denominator.)
If z is very large (z → ∞) , then E → 0 , as it should; the two charges “merge” and so cancel out.

Check Your Understanding What is the electric field due to a single point particle?

Try this simulation of electric field hockey (https://openstaxcollege.org/l/21elefielhocke) to get the
charge in the goal by placing other charges on the field.

5.5 | Calculating Electric Fields of Charge Distributions

Learning Objectives

By the end of this section, you will be able to:

• Explain what a continuous source charge distribution is and how it is related to the concept of
quantization of charge

• Describe line charges, surface charges, and volume charges

• Calculate the field of a continuous source charge distribution of either sign

The charge distributions we have seen so far have been discrete: made up of individual point particles. This is in contrast
with a continuous charge distribution, which has at least one nonzero dimension. If a charge distribution is continuous
rather than discrete, we can generalize the definition of the electric field. We simply divide the charge into infinitesimal
pieces and treat each piece as a point charge.

Note that because charge is quantized, there is no such thing as a “truly” continuous charge distribution. However, in most
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